Automated Complex for Experimental Researches of Efficiency External Defibrillators/Cardioverters at Various Waveforms and Parameters of Electrical Pulses

Introduction

In spite of intense research into this problem, there is still no agreed-upon theory of mechanisms of electric defibrillation that would be able to explain most experimental data [4].

The efficacy of electrical defibrillation therapy at terminating ventricular fibrillation is highly dependent on the waveform used, waveform parameters, waveform impedance-compensation schemes, and relative shock magnitudes. This has lead to an extensive, experimental search for the optimal waveform, the optimal waveform being the waveform which achieves the highest defibrillation efficacy with the least amount of energy from the defibrillator [1-3,5].

At low-impedance, all biphasic shocks achieved near-perfect success, while efficacy was significantly lower for high-impedance shocks [5]. Despite impedance-compensation schemes in biphasic defibrillators, impedance has an impact on their efficacy. At high-impedance, modest efficacy differences exist among clinically available biphasic defibrillators, reflecting differences in both waveforms and manufacturer-provided doses.

During action of an electrical pulse transthoracic impedance changes, and there is a nonlinear dependence between an electrical current and voltage [1].

Russian automated complex for experimental researches of efficiency external defibrillators/cardioverters at various waveforms and parameters of electrical pulses, real-time measuring of transthoracic electrical impedance during external defibrillation is presented. There are module for heart fibrillation of animals (dogs and pigs), module for defibrillation/cardioversion procedures and module for monitoring of physiological parameters of the animals.

Material and Methods

This study was approved by the Russian Research Institute of Transplantology and Artificial Organs at Animal Laboratory (Fig.1).

Fig. 1: General view of automated complex

The module for monitoring of physiological parameters of the animals contains display (monitor), invasive pressure sensors, ECG sensors, multichannel universal analog-to-digital converters (ADC), personal computer (PC) and uninterrupted power source (UPS) (Fig.2).

Fig. 2: Module for monitoring of physiological parameters of the animals.

Bloc-diagram of module for defibrillation/cardioversion procedures is presented on Fig.3.

215
Energy divider provides a rough choice of energy value for defibrillation/cardioversion. Voltage and current sensors detect the real electrical parameters on animal. Then these signals amplify, transformed to digital form (ADC) and processed by digital signal processor (DSP). Personal computer (PC) provides additional calculations and in real time displays the information.

General view of module for defibrillation/cardioversion procedures is presented on Fig. 4.

Results

Typical curve for dependence of animal impedance on electrical current through animal is presented on Fig. 5.

Discussion

The designed complex allows to realize experimental researches of efficiency external defibrillators/cardiovigers at various waveforms and parameters of electrical pulses, real-time measuring of transthoracic electrical impedance during external defibrillation/cardioversion on animal models.

There are module for heart fibrillation of animals (dogs and pigs), module for defibrillation/cardioversion procedures and module for monitoring of physiological parameters of the animals.

There is a nontrivial, nonlinear dependence between animal impedance and electrical current through animal.

Literature


Affiliation of the first Author
Gorbunov Boris
Moscow Institute of Electronic Technology (Technical University)
Proezd 4806, Zelenograd
Moscow, 124498
Russia
e-mail adress: borgor@bmslab.miet.ru