ОЦЕНКА ДЕЙСТВИЯ КАРДИОТРОПНЫХ ВЕЩЕСТВ С ПОМОЩЬЮ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОМЕХАНИЧЕСКОГО СОПРЯЖЕНИЯ

ПРЯТУСЕВИЧ В. Р., ЗЫКОВ В. С., МУКУМОВ М. Р.

Показана возможность определения ионного механизма действия кардиотропных веществ с помощью математической модели электромеханического сопряжения в миокарде. Работоспособность метода проверена с помощью введению взаимосвязи между функциональным состоянием отдельных звеньев электромеханического сопряжения (ЭМС) и параметрами электрической и сократительной активности, например, в миокарде, позволяет надеяться на создание более рационального метода для определения ионного механизма действия ФАВ, обладающих кардиотропной активностью.

Определенный этап при создании новых лекарственных средств — установление ионного механизма действия физиологически-активных веществ (ФАВ), входящих в их состав. В настоящее время для этого применяются трудоемкий фармакологический анализ, суть которого заключается в исследовании изменения эффектов вещества в ответ на последовательное ингибитирование или активацию потенциальных клеточных мишеней с помощью относительно специфических химических соединений [1]. Вместе с тем наличие взаимосвязи между функциональным состоянием отдельных звеньев электромеханического сопряжения (ЭМС) и параметрами электрической и сократительной активности, например, в миокарде, позволяет надеяться на создание более рационального метода для определения ионного механизма действия ФАВ, обладающих ионотропной активностью.

В настоящей работе показана принципиальная возможность решения указанной задачи с помощью математической модели баланса Ca++ в кардиомиоците на основании регистрации внутриклеточных потенциалов и изометрического сокращения фрагмента миокарда, стимулируемого по специальной программе и в настоящее время испытываемого химического соединения. Проведенные исследования включали в себя: выбор математической модели ЭМС, разработку программы стимуляции и отбор регистрируемых параметров, отработку методики параметрической идентификации, и проверку ее работоспособности в опытах на животных с помощью веществ различных классов, обладающих известным механизмом действия. Более того, сила сокращения кардиомиоцита определяется концентрацией свободного кальция в районе сократительного аппарата [2]. В свою очередь, концентрация Ca++ в миоплазме регулируется интенсивностью субклеточных потоков, которые могут претерпевать изменения под действием кардиотропных агентов [3—5].

\[
\begin{align*}
\frac{dc(t)}{dt} &= a_c(t) + \alpha(t-\tau)a_r(t)c(t) - \beta(t-\tau)a_r(t)c(t), \\
\frac{dr(t)}{dt} &= a_r(t) - \alpha(t-\tau)a_r(t)c(t) - \beta(t-\tau)a_r(t)c(t) - a_r(t),
\end{align*}
\]

где \(c\) — содержание Ca++ в миоплазме (среда изометрического сокращения миокардиальной полоски принимается в первом приближении пропорциональной данной величине); \(r\) — содержание Ca++ во внутриклеточных депо (саркоплазматический ретикулум, подмембранные Ca-
Рис. 1. Экспериментальная запись внутриклеточных потенциалов и сократительной активности миокарда (a) и схема оценки сократительного ответа (b); электрическая активность — верхняя кривая.

depo); \(\alpha(t) \) — функция, описывающая возбуждение миокардиальной клетки; \(\alpha = 1 \) в активную fazu длиностью \(D \), \(\alpha = 0 \) в остальное время цикла; \(a_s, a_i \) — интенсивности стационарного и потенциалзависимого компонентов входящего в клетку Ca-потока соответственно; \(A_s \) — интенсивность захвата Ca\(^{2+}\) во внутриклеточные депо; \(A_i \) — интенсивность выброса Ca\(^{2+}\) из депо во время активной фазы сократительного цикла; \(a_x \) и \(a_y \) — интенсивности потенциалзависимого и стационарного компонентов Ca-потока, выходящего из депо во внеклеточную среду; \(t \) — задержка начала развития сокращения по отношению к началу возбуждения клетки.

Методика идентификации. Задача определения ионного механизма действия кардиотропных веществ сведена нами к задаче параметрической идентификации модели ЭМС в кардиноцисте, т. е. определению коэффициентов модели, обеспечивающих минимум функционала рассогласования между экспериментальными и модельными значениями измеряемых параметров. Сопоставление наборов коэффициентов, полученных до и во время действия ФАВ, позволяет выявить внутриклеточные потоки Ca\(^{2+}\), подвергшиеся изменению при данном воздействии.

Несмотря на относительную простоту, система (I) тем не менее достаточно сложна для аналитического изучения. Основным инструментом ее исследования служили вычислительные эксперименты, в которых, в частности, был выявлен достаточный набор исходных параметров для идентификации системы (I) и проявлен по сходимости алгоритм идентификации. При этом оказалось, что метод идентификации модели (I) по измеренной особенности «частота — сила» невозможно в силу плохой обусловленности задачи. Недостаточно также информации о форме отдельного (одного) сократительного цикла, так как в этом случае решение задачи идентификации не единственное. В вычислительных экспериментах было показано, что задания идентификации имеет единственное решение, устойчивое к случайным ошибкам измерений, если использовать информацию о форме пятна последовательных сокращений после покоя при двух различных частотах стимуляции.

На рис. 1 сверху показан пример экспериментальной записи «лестницы» сокращений и соответствующих мембранных потенциалов папиллярной мышцы крысы на частоте 0,5 Гц после 5-мин периода покоя. (5 мин достаточно для приведения мышцы в исходное состояние, не зависящее от предшествовавшей стимуляции). Внизу схематично представ-
ле́ны пара́метры сократительного отве́та, вводимые в про́гранный иден́тификаци́и. Величи́на си́лы сокра́щения для каж́дого из пяти́ сократи́тельных циклов фиксиру́ется в 11 точках, первая из ко́торых соотве́тствует нача́лу активной фазы. Ана́логичная проце́дура осу́ществля́ется при стимуля́ции с частотой 0,167 Гц. По́ этим дан́ным произо́водится рас́chet функционала рассогласова́ния измеренны́х зна́чений си́лы сокра́щения со зна́чениями реше́ния $c(t)$ сис- темы (1) для тых же мо́ментов вре́мени. При получе́нии реше́ния системы (1) нача́льные условия беру́тся соотве́тствующе́ми состоя́нию покоя́ ($c_0 = a_0/a_0$, $r_0 = a_0/a_0$); длительности́ активной фазы D_i счита́ются пропорцио́нальными во́ременем до́стижения макси́мума си́лы сокра́щения D_i с масштаби́нным ко́эффициен́том k. По́ вводимым в про́гранный измеренны́х пара́метрах A_i, где i — но́мер со́кратительного цикла ($i=1, \ldots, 10$), j — но́мер точки́ внутри́ цикла ($j=0, \ldots, 10$) и D_i ($i=1, \ldots, 10$), про́гранным идентифика́цией опре́деля́ется коэффициен́т a_0-a_0 и па́раметры t и k путем миними́зации функцио́нала рассогласова́ния.

В каче́стве алго́ритма идентифика́ции моделей ЭМС в мио́карде при́менен алго́ритм Гаусса́ — Ньютонна [13] в модифици́рованной, предусматри́ваю́щей дробле́ние шага́ итераци́и при наруше́нии условий устойчивости и неопредели́мости коэффициен́тов. Он реализо́ван в виде́ сисне́мы про́грамм на ФОРГРАМ-IV для ЭВМ ICL 470, допуска́ет изменение числа́ именуе́мых па́раметров сокра́щения, легко́ модифициру́ется при переходе́ к другим моделям типа́ систем дифференциальны́х уравнений. Блок ми́нимальизации функционала рассогласова́ния не иску́посредственно́ но обраще́ния матри́цы при расчете́ очередного́ шага́ итераци́и, что до́стигается примене́нием метода́ квадратного корня́ [14]. В результа́те алго́ритм работоспособен и для «пло́ких» функциона́лов рассогласова́ния. Предусмотре́на также́ опе́рая качествы́ сходимости́ путем расчета́ прибли́женных доверительных интервалов для идентифициро́ванных коэффициен́тов (в линейном прибли́жении задачи́) [15]. Подробно́ о мето́дике экперимен́тов см. в [11].

Пре́верка рабо́тоспособности́ мето́дик. Для опе́ки эффективности́ разрабо́тыванной мето́дик в усло́виях «за́шумленных» исходных дань́х были про́ведены вычислительные экперимен́ты с идентификаци́ей па́раметров моде́ли по имитирова́нным дань́м с на́ложением поме́х, име́ющей нормальную распределение с нулевым средним и с диапа́сом от a до a, составляю́щей заданную долю макси́мальной величи́ны си́ла сокра́щения. Сходимость алго́ритма на нара́же сǹ в линейной адапта́тивной поме́хе́ с $a<5\%$ макси́мальной величи́ны сигна́ла́, что позволяет́ приме́нять данный алго́ритм при обработке́ результатов экперимен́тов на животных.

Рабо́тоспособность́ предла́гаемой мето́дик проверя́лась в опыте на папиллярной мы́шке крысы́ с по́мощью ФАВ с известны́м механизмом де́йствия. В каче́стве примера́ на рис. 2 приведе́ны ре́зультаты примене́ния разрабо́тыванной мето́дик к дань́м, полученны́м в экперимен́те с ди́лтиазе́мом — блокатором Са2+-каналов [5].

Сопоста́вле́я нао́ры коэффициен́тов, полученье́ в результа́те иден́тификаци́и математиче́ской модели (1) ЭМС по дань́м электри́ческой и сократительной активности́ мио́карда крысы́ до и после́ добавле́ния ди́лтиазе́ма в ра́створ, о́мываша́ющий препа́рат (ампли́туды сокра́щения предста́влены́ на рис. 2, а), видим, что коэффициен́т a, уменьше́ния на ~50%, a увеличился на 17%, a уменьши́лся на 16%, остальны́е изме́нились на $<10\%$. На́более зна́чительное изменение (уменьше́ние в ~2 раза́) претерпе́л коэффициен́т a, что указыва́ет на сниже́ние Са-тока под влиянием ди́лтиазе́ма. Это хорошо́ согласу́ется с известны́ми данными о де́йствии ди́лтиазе́ма как блокатора́ Ca-каналов [5] и слу́жит подтвержде́нием рабо́тоспособности́ мето́дик.

Обсужде́ние. В насто́ящей рабо́те предложе́н но́вый мето́д опре́деления механизмов воздействий ФАВ на мио́кард, свода́ющийся к иден́тификаци́и математиче́ской модели ЭМС по измеренны́м характеристикам электри́ческой и сократительной активности́ мио́карда. Основное приме-
Рис. 2. Результаты идентификации механизмов действия диапазона на миокард крысы:
а — зарегистрированные амплитуды «врезных» сокращений на частотах 0,167 (I) и
0,5 Гц (2) до (1, 2) и после добавления ФАВ (1', 2') в омылающий раствор;
б — диаграммы идентифицированных коэффициентов в норме (штриховая линия) и при действии
диапазона (штриховка линия). Величины Д и τ, имеющие размерность времени,
длины в с, остальные коэффициенты (размерностью обратного времени) — в с⁻¹.

вение метода — прогностирование ионного механизма действия физических
или фармакологических факторов на миокард [16].

Применяемый метод параметрического анализа требует значительных затрат машинного времени, поэтому его реализация возможна только на достаточно мощных ЭВМ. Один из путей снижения трудоемкости метода — использование при подборе параметров приближенных оценок для измеряемых величин (аналогичных формулам, полученным в работе [12], но сохраняющим точность в более широкой области проявления параметров).

Следует отметить, что в силу неизбежной неполноты модели изложения методика позволяет лишь прогнозировать мишень ФАВ и предсказывает выполнение контрольной серии экспериментов. Несмотря на эти ограничения, предлагаемый метод приводит к значительному сокращению числа экспериментов на животных в ходе углубленного изучения кардиотропных химических соединений.

Авторы выражают благодарность Ю. С. Ляховичу за предоставленные экспериментальные материалы.

ЛИТЕРАТУРА

1. Проблемы изыскания, исследования и производства новых лекарственных средств. Каукас. Шкале, 1978.
EVALUATION OF THE ACTION OF CARDIOTROPIC SUBSTANCES
BY MEANS OF A MATHEMATICAL MODEL OF ELECTROMECHANICAL COUPLING

Pratusevich V. R., Zykov V. S., Mukumov M. R.

Moscow Department, Research Institute for Biological Tests of Chemical Compounds; Institute of Control Sciences, Moscow

An assessment of the ionic action mechanism of cardiotropic substances with the aid of a mathematical model for excitation-contraction coupling in myocardium is proved to be possible. The technique developed consists in the model parameter identification from the experimental data on electrical and mechanical activity of myocardial strip. The validity of the technique is tested using the known mechanism drugs. An example is given of analysis by the technique suggested of the action mechanism of diltiazem on the rat papillary muscle.