

474 978-1-5090-0445-4/16/$31.00 ©2016 IEEE

Development and Implementation of Software
Architecture for Data Visualization With Various

Medical Devices

I.N. Rodionov
1
, I.V. Nesterenko, D.V Telyshev

Department of biomedical system
National Research University of Electronic Technology

Zelenograd Moscow, Russian Federations
1
rodionov@bms.zone

T.G. Le
Bacoulev Institute for Cardiovascular Surgery

Moscow, Russia
tanya_co@mail.ru

Abstract—The software package capable to provide support
of various medical devices has been developed. Architecture of
the program is based on the "Mode-View-Controller" pattern,
with a passive model. Each module implements the structural
pattern "Bridge". At the expense of it the system of plug-ins is
provided. Plug-ins for the "Model" form the data from various
devices. Plugin "View_Qt" implements a graphical user interface
and provides centralized access to data. Data filtering happens at
the level of model, but their check is carried out in the controller.

Keywords— biomedical; pattern; rogramming; design; software

I. INTRODUCTION

Rapid development of the modern technique allowed to
expand considerably a line of the medical equipment applied
in medical institutions. However, such a variety of devices has
led to the emergence of a large number of complex software
systems, which need to work doctor. An example may be a
program for analyzing ECG and EEG data, the program of
information processing about operation of artificial heart.
They all have similar functionality, but they can only work
with one specific device. For lowering of time necessary for
training on the medical equipment is offered the universal
software allowing not only to reduce time for training of
medical staff, but also to reduce costs of software
development for the specific equipment (Fig. 1).

Fig. 1. Illustration ideas single data access medical devices

II. PAGE STYLE

The basis of the program architecture is a pattern Model-
View-Controller (MVC) [1]. Its main feature is that the model
of application and the user interface are partitioned into
separate components so that a change in one of them has a
minimal impact on the other. There are several varieties of
MVC. Among them the scheme with passive model was
selected, i.e. the model has no opportunity to influence
representation (Fig. 2).

Fig. 2. Scheme pattern "Model-View-Controller"

In order to ensure greater flexibility of architecture it is
decided that each of MVC modules realizes a pattern "Bridge"
(Fig. 3) [2]. Its essence lies in the fact that the basic module is
an abstraction, whose main task is redirection of all the
received requests to other elements, in this case to
dynamically connected elements – plug-ins. In turn in plug-ins
are implemented special cases for each of the possible queries.

We will consider it on the example of the Model
module (Fig. 4). In it there is a method "fillControllerDate()" –
responsible for filling of data for the controller, in which is
called the appropriate method of the internal pointer and the
returns result of its operation. This internal pointer is a virtual
function table [3], which is the interface, with which operates
the Model, and an interface that should override all plug-ins
for the model.

Currently developed a plugin for "Model_Heart" model,
which is responsible for access to the data generated during
the operation of the device of the long mechanical substitution
of function of heart. It defines the necessary interface for the
model, including method "fillControllerDate()" in which data
for the controller are formed from the data read from the file.

475

Fig. 3. Scheme structural pattern "Bridge"

In summary, using different plug-ins, depending on model
parameters, the user obtains data from different devices.
Moreover, data can be taken both from the file, and from a
remote server, or to be read out directly from the device. As a
result to add support of the new device it is necessary to write
the appropriate plug-in for model. At the same time it isn't
necessary to recompile all system since plug-ins are connected
dynamically – i.e. in the course of operation of application.

Fig. 4. Implementation of the "Bridge" pattern on the example of "model"
module

Each of modules realizes the "Bridge" template, i.e. they
supports system of plug-ins. Including the module "View" for
which plug-ins are responsible for the user interface. One of
them is "View_QT" – the plug-in based on a framework of Qt
[4]. The area of data mapping which is available in it is based
on the "QtCharts" library, designed to draw graphs. The
majority of similar libraries work by the following principle:
in the beginning to them all available data array is provided,
further there is their processing and display, and only then the
user can interact with available information [5]. The problem
of this scheme is that there is a duplication of information.
These models may have changed over time, but because stored

in the interface of the old data copy, then it does not reflect the
changes occurred with the data. It was therefore decided to use
other algorithm of operation. Every time there is a change in
the data display area: the application window size is changed,
changed the scale, triggered a timer update - this field is
redraw. But before this new data is requested from the model
for the new desired area. Only on the basis of the newly
received data is repainted. Model offers not all data, but only a
part. Selects the available information, based on the
parameters of the request. It provides data only from the
required area - ie what a user wants to see at particular time.

But happens that there is too much data for necessary area
in model. For example if conditionally to take area of 100x100
pixels on a display element of diagrams, then for this period
the model can have 10 000 samples (Fig. 3). But for obvious
reasons we could display only 100 points. Therefore in model
there is data filtering. on the basis of different methods –
decimations or approximations. Data is actually formed for the
specific screen resolutions. For this example on an output
receive 100 points which need to be displayed on a graphics.
Besides, always realized is one case - the complete data update.

Fig. 5. (a) Superimposing event icons on each other; (b) Packing events
close group and access group data

In the provided scheme, the model completely is
responsible for information obtained by the user. Therefore at
the different scale it is possible to show the different or
changed data. For example, "events" - their icons are
displayed in the upper part of the area of visualization of data.
At the certain scale of an icon will strongly superimpose each
other (Fig. 5.a), worsening their perception. Therefore the
model assembles events into groups and presents them in the
form of one event, when you click on that you can is possible
to receive the complete list of the hidden data (Fig. 5.b).
Uploading of contents of group occurs only while the user
demands this information.

As a result, this system makes it easy to work with large
amounts of data, which is essential, as the target medical
equipment, for which developed the software package: sensors
ECG and EEG, the device long mechanical replacement heart
function - are high-frequency devices that generate data with a
large frequency and, consequently, in large volumes.

In the controller, and specifically in its plug-in of
"Controller_Standard" there is a data conversion created by
"Model" into a form perceivable by "View" and also

476

transmission of requests from "View" in "Model" (Fig. 6). In
addition in this module there is additional data filtering as well
as correction parameters incoming requests [6]

Fig. 6. The final scheme of architecture of the developed program complex

III. CONCLUSIONS

As a result, we get quite a flexible architecture in which
each element of the MVC is implemented through a plugin
system (Fig. 6). This makes it easy to add support for new
devices, and secondly allows multiple user interfaces. For
example, in addition to "View_Qt" is created the plug-in for
the console interface – "View_Console". So far it is used for
testing of the developed system, but in the future it can work
with third-party software, which only the data from the
instruments will be required, without the graphical user
interface.

The present software allows you to view data received
from various devices (Fig. 7). This will significantly reduce
the time of training of medical personnel, as will no longer
need to work with a number of programs designed for specific
devices.

Fig. 7. Devices which are planned to be united with the help of the developed
program complex

Markedly reduced the time to create software for the new
hardware. Developers will need to write only a part of the
system - a module that provides access to specific data, and
then connect it to the submitted software.

ACKNOWLEDGMENT

The work was supported by the Ministry of Educational
and Science (project ID RFMEFI60715X0113).

REFERENCES

[1] M. Fowler, Patterns of Enterprise Application Architecture, 1st ed.:
Addison-Wesley Professional, 2003.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Addison-Wesley, 1994.

[3] B. Stroustrup, The C++ Programming Language, 4rd. ed.: Addison-
Wesley, 2013.

[4] M. Schlee, Qt 5.3 Professional programming in C++, St. Petersburg,
Russian Federation: BHV-Petersburg, 2015.

[5] J. Kerievsky, Refactoring to Patterns: Addison-Wesley, 2004.

[6] E. Freeman, Head First Design Patterns: O'Reilly Media, 2004.

View publication stats

https://www.researchgate.net/publication/316906248

